Sample Midterm Questions (CS 477 Spring 2013)

1. Give truth tables for each subformula of the following formulae:
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2. Give Natural Deduction proof trees for each of the above propositions.
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3. Consider the signature G = (V = {x,y,2}, F = 0,af =0, R = {<}, ar = {< — 2}), and the structure S = {G,D =N, F,$, R, p} where p(<) is normal less-than
comparison. Given the formula Vy. y < z = (Vz. =(z < y)):

(a) give an assignment that satisfies the formula, and explain why it does.

Any assignment that assigns 1 to x will do, since the only y < 1 is 0, and there is no z < 0 in N. Any assignment that assigns 0 to x will also work, since
there is no y < 0, making the implication vacuously true.

(b) give an assignment that falsifies the formula, and explain why it does.

Any assignment that assigns a number greater than 1 to x will do, since we can then choose y < z such that y > 0, and then choose 0 for z to falsify the
formula.



4. Give a Natural Deduction proof for the formula (3z. Vy. r(x,y)) = (Vy. 3z. r(z,y))
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5. Prove the following Hoare triple:
{n>1}f:=1; i:=n; whilei>1do (f:= fx*i; i:=i—1){f =nl}

By Precondition Strengthening, it suffices to show that
{n>1Al=nl/nl}f:=1; i:=n; whilei>1do (f:=fxi; i:=i—1){f =nl}

The reason for this rather strange precondition will become clear when we reach the while loop. Using the Sequencing rule and the Assignment Rule, we can
show that

{n>1A1=nl/nl}f =1{n>1A f=nl/nl}
and

{n>1Af=nl/nl}i:=n{i > 1A f=nl/il}
leaving us with the remaining triple

{i>1Af=nl/il}whilei>1do (f:=fxi; i:=i—1){f=nl}
By Postcondition Weakening, it is sufficient to show that
{i>1Af=nl/il}lwvhilei>1do (f:=fx*i;i:=i—1D{i>1Af=nl/ilAi<1}

since ¢ > 1 A4 < 1 implies that i = 1, and n!/1! = n!. Now we can use the While rule: by showing that

{i>INf=nl/ilNi>1}f = fxi; i:=i—1{i > 1A f=nl/il}

we will have verified the original triple. 4 > 1 implies that ¢ — 1 > 1, and f = n!/i! implies that f xi = n!/(i — 1)!, so by Precondition Strengthening, this is
equivalent to showing that

{i—=1>1Af*i=nl/(i =)} f:=fxi; i:=i—1{i > 1A f=nl/il}
Now, by the Assignment rule we show that
{i—1>1Afri=nl/Gi— I} f=f*i{i—1>1Af=nl/(i — 1)}

and
{i—=1>21Af=nl/G-D}i:=i—1{i > 1A f=nl/il}

and use the Sequencing Rules to combine these two steps, completing the proof.



6. Give a Floyd-Hoare rule for the command repeat C until B, which repeatedly executes C' until B is true. Note that B is checked after each execution of C,
so that C is always executed at least once.

The simplest correct rule is:

{Pprc{Qr  {@A-B}C{Q}
{P}repeat C until B{Q A B}

More complicated solutions are possible; the rules are correct as long as they reflect the fact that repeat C' until B = C; while =B do C.

7. Calculate weakest preconditions and verification conditions for the following Hoare triples:

(a)

{n>1}f:=1; i:=n; while i > 1do (f:= fxi; i:=i— 1){f =nl}

First, we have to annotate the loop with its loop invariant, P = (i > 1 A f = n!/i!). Now: wp (while ¢ > 1 inv P do (f:= fx*4; i:=i—1)) {f =nl} =
P,wp (i :=n; while i > 1inv P do (f := fx*4; i:=i—1)) {f =nl} = wp (i :=n) P = P[i = n], and the weakest precondition for the entire program is
Pli=n,f=1]=(n>1A1=mnl/n!) (which you might recognize from the proof above).

For verification conditions, since the conditions generated by a sequence of assignment statements is true, the conditions for the entire program are equal to
veg (while ¢ > 1inv Pdo (f:=fxi; i:=i— 1)) {f=nl}=(PAi>1)=wp C P)A(veg C P)AN((PAi<1)= (f=mn!)), where C is the loop body.
wp C Pis P[f = fxi][i = i—1], and veg C P is true, so the above is equivalent to (P A4 > 1) = P[f = fxili=i—1)A(PAi<1)= (f=n!).
{a>0Ab>0}

m:=a; n:=b;

while n # m do (if m < n then n:=n —m else m :=m —n)

{a mod m = 0 Abmod m = 0}

A likely loop invariant for this program’s loop is P = (GCD(a,b) = GCD(n,m)). With this invariant, the weakest precondition for the program is
Pln = b][m = a] = (GCD(a,b) = GCD(a, b)), which is trivial as long as ¢ > 0 and b > 0.

As before, the assignment statements contribute no verification conditions, and the vcg of the program is (P Am # n) = (wp C P)) A((PAm =n) =
(¢ mod m = 0Ab mod m = 0)), where C is the loop body. Now wp C P = (m < nA(P[n=n—m]))V(m > nA(P[m = m—n])), giving a final verification
condition of (PAm #n)= ((m<nA(Pln=n—-m]))V(m>nA(Pm=m-—n])))A(PAm=n)= (amodm=0Abmod m =0)).



