Sample Midterm Questions (CS 477 Spring 2013)

1. Give truth tables for each subformula of the following formulae:

(a) pr: A= AN(AV B)

P1

(AANB)VC | o

AANB

AVC)A(BVO)

A|B|AVB|AAN(AV B)

(AVC)AN(BVC))= ((AANB)VC)

(b) 2

T
T
F
F
T
T
F
F

A|B|C|AvC |BvC

(A=B)=((B=0)=(4=0))

(c) g3

¥3

(B=C)=(A=C)

T
T
F
F
T
T
F
F

A|B|C|A=B|B=C|A=C

2. Give Natural Deduction proof trees for each of the above propositions.

mHYP
WHYP WORLI
(A} FAA(AVB) D1
GrA=an@ave !
Let T ={(AVC)A(BV(C),AVC}and Iy =T, U{A,BV C} in
- Hypr FlU{O} -¢ o Org I
EAvVC P, rhu{C}+-(AAB)VC
AV A(BVOF(AvO ABYe) T F (AAB)VC iREE
(AVO)A(BVCO) F (AAB)VC INDi
OF(AVCO)ABVC) = (AAB)VO) .

where P; =

——— — H —————— — H
LU{BIFA © T,u{(BIFB .
AND I

———— Hyp
IU{B}F (AAB) r,u{C}rcC
——— Hyp Oryp I Orpg 1
. I's-BvC L, U{B}-(AAB)VC FQU{C}F(AAB)VCO .
YP R
Hu{A}F(AVC)A(BV () IsH(AAB)VC A -
ND
T, U{A}F (AAB)VC &
Finally, let 'y = {A= B,B=C} in
Hyp —— X X — Hyp Hyp
rhMu{4,B}+-B=C ryu{4,B}+B rhu{A,B,C}+C
Hyp — Hyp Imp E
MP
rMu{A}+C
Imp I
MMrEFA=C
Imp I
{A=B}F(B=C)=(A=0C) e T
MP
F(A=DB)= (B=C)= (A= (C))

3. Consider the signature G = (V = {x,y,2}, F = 0,af =0, R = {<}, ar = {< — 2}), and the structure S = {G,D =N, F,$, R, p} where p(<) is normal less-than
comparison. Given the formula Vy. y < z = (Vz. =(z < y)):

(a) give an assignment that satisfies the formula, and explain why it does.

Any assignment that assigns 1 to x will do, since the only y < 1 is 0, and there is no z < 0 in N. Any assignment that assigns 0 to x will also work, since
there is no y < 0, making the implication vacuously true.

(b) give an assignment that falsifies the formula, and explain why it does.

Any assignment that assigns a number greater than 1 to x will do, since we can then choose y < z such that y > 0, and then choose 0 for z to falsify the
formula.

4. Give a Natural Deduction proof for the formula (3z. Vy. r(x,y)) = (Vy. 3z. r(z,y))

{3z. Vy. r(z,y),Vy. r(z,y)} - Vy. r(z,y) Hve {3z. Vy. r(z,y),Yy. r(z,y),r(z,y)} F r(z,y) izi E
{3z. Vy. r(z,y),Vy. r(z,y)} F r(x,y) Ex T
Hvp {3z. Vy. r(z,y),Yy. r(z,y)} F z. r(z,y) AL 1
{3x. Vy. r(z,y)} F Jz. Vy. r(x,y) {3x. Vy. r(z,y),Vy. r(z,y)} F Yy. Tz. r(x,y) Bx B
{3z. Vy. r(z,y)} F Vy. z. r(z,y) e 1
{3+ Fz. Yy. r(z,y)) = (Vy. Jz. r(z,y))

5. Prove the following Hoare triple:
{n>1}f:=1; i:=n; whilei>1do (f:= fx*i; i:=i—1){f =nl}

By Precondition Strengthening, it suffices to show that
{n>1Al=nl/nl}f:=1; i:=n; whilei>1do (f:=fxi; i:=i—1){f =nl}

The reason for this rather strange precondition will become clear when we reach the while loop. Using the Sequencing rule and the Assignment Rule, we can
show that

{n>1A1=nl/nl}f =1{n>1A f=nl/nl}
and

{n>1Af=nl/nl}i:=n{i > 1A f=nl/il}
leaving us with the remaining triple

{i>1Af=nl/il}whilei>1do (f:=fxi; i:=i—1){f=nl}
By Postcondition Weakening, it is sufficient to show that
{i>1Af=nl/il}lwvhilei>1do (f:=fx*i;i:=i—1D{i>1Af=nl/ilAi<1}

since ¢ > 1 A4 < 1 implies that i = 1, and n!/1! = n!. Now we can use the While rule: by showing that

{i>INf=nl/ilNi>1}f = fxi; i:=i—1{i > 1A f=nl/il}

we will have verified the original triple. 4 > 1 implies that ¢ — 1 > 1, and f = n!/i! implies that f xi = n!/(i — 1)!, so by Precondition Strengthening, this is
equivalent to showing that

{i—=1>1Af*i=nl/(i =)} f:=fxi; i:=i—1{i > 1A f=nl/il}
Now, by the Assignment rule we show that
{i—1>1Afri=nl/Gi— I} f=f*i{i—1>1Af=nl/(i — 1)}

and
{i—=1>21Af=nl/G-D}i:=i—1{i > 1A f=nl/il}

and use the Sequencing Rules to combine these two steps, completing the proof.

6. Give a Floyd-Hoare rule for the command repeat C until B, which repeatedly executes C' until B is true. Note that B is checked after each execution of C,
so that C is always executed at least once.

The simplest correct rule is:

{Pprc{Qr {@A-B}C{Q}
{P}repeat C until B{Q A B}

More complicated solutions are possible; the rules are correct as long as they reflect the fact that repeat C' until B = C; while =B do C.

7. Calculate weakest preconditions and verification conditions for the following Hoare triples:

(a)

{n>1}f:=1; i:=n; while i > 1do (f:= fxi; i:=i— 1){f =nl}

First, we have to annotate the loop with its loop invariant, P = (i > 1 A f = n!/i!). Now: wp (while ¢ > 1 inv P do (f:= fx*4; i:=i—1)) {f =nl} =
P,wp (i :=n; while i > 1inv P do (f := fx*4; i:=i—1)) {f =nl} = wp (i :=n) P = P[i = n], and the weakest precondition for the entire program is
Pli=n,f=1]=(n>1A1=mnl/n!) (which you might recognize from the proof above).

For verification conditions, since the conditions generated by a sequence of assignment statements is true, the conditions for the entire program are equal to
veg (while ¢ > 1inv Pdo (f:=fxi; i:=i— 1)) {f=nl}=(PAi>1)=wp C P)A(veg C P)AN((PAi<1)= (f=mn!)), where C is the loop body.
wp C Pis P[f = fxi][i = i—1], and veg C P is true, so the above is equivalent to (P A4 > 1) = P[f = fxili=i—1)A(PAi<1)= (f=n!).
{a>0Ab>0}

m:=a; n:=b;

while n # m do (if m < n then n:=n —m else m :=m —n)

{a mod m = 0 Abmod m = 0}

A likely loop invariant for this program’s loop is P = (GCD(a,b) = GCD(n,m)). With this invariant, the weakest precondition for the program is
Pln = b][m = a] = (GCD(a,b) = GCD(a, b)), which is trivial as long as ¢ > 0 and b > 0.

As before, the assignment statements contribute no verification conditions, and the vcg of the program is (P Am # n) = (wp C P)) A((PAm =n) =
(¢ mod m = 0Ab mod m = 0)), where C is the loop body. Now wp C P = (m < nA(P[n=n—m]))V(m > nA(P[m = m—n])), giving a final verification
condition of (PAm #n)= ((m<nA(Pln=n—-m]))V(m>nA(Pm=m-—n])))A(PAm=n)= (amodm=0Abmod m =0)).

