Sample Midterm Questions (CS 477 Spring 2013)

1. Give truth tables for each subformula of the following formulae:
(a) $\varphi_{1}: A \Rightarrow A \wedge(A \vee B)$

A	B	$A \vee B$	$A \wedge(A \vee B)$	φ_{1}
T	T	T	T	T
T	F	T	T	T
F	T	T	F	T
F	F	F	F	T

(b) $\varphi_{2}:((A \vee C) \wedge(B \vee C)) \Rightarrow((A \wedge B) \vee C)$

A	B	C	$A \vee C$	$B \vee C$	$(A \vee C) \wedge(B \vee C)$	$A \wedge B$	$(A \wedge B) \vee C$	φ_{2}
T								
T	T	F	T	T	T	T	T	T
T	F	T	T	T	T	F	T	T
T	F	F	T	F	F	F	F	T
F	T	T	T	T	T	F	T	T
F	T	F	F	T	F	F	F	T
F	F	T	T	T	T	F	T	T
F	T							

(c) $\varphi_{3}:(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))$

A	B	C	$A \Rightarrow B$	$B \Rightarrow C$	$A \Rightarrow C$	$(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$	φ_{3}
T							
T	T	F	T	F	F	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	F	F	T
F	T						
F	T	F	F	F	T	T	T
F	F	T	T	T	T	T	T
F	F	F	F	T	T	T	T

2. Give Natural Deduction proof trees for each of the above propositions.

$$
\frac{\frac{\overline{\{A\} \vdash A} \mathrm{Hyp} \quad \frac{\overline{\{A\} \vdash A} \mathrm{HyP}^{2}}{\{A\} \vdash A \vee B} \text { Or }_{L} \text { I }}{\{A\} \vdash A \wedge(A \vee B)} \text { And I }}{\} \vdash A \Rightarrow A \wedge(A \vee B)} \text { Imp I }
$$

Let $\Gamma_{1}=\{(A \vee C) \wedge(B \vee C), A \vee C\}$ and $\Gamma_{2}=\Gamma_{1} \cup\{A, B \vee C\}$ in

$$
\frac{\frac{\overline{\{(A \vee C) \wedge(B \vee C)\} \vdash(A \vee C) \wedge(B \vee C)} \operatorname{Hyp} \quad \frac{\overline{\Gamma_{1} \vdash A \vee C} \operatorname{Hyp} \quad P_{1} \quad \frac{\overline{\Gamma_{1} \cup\{C\} \vdash C} \overline{\Gamma_{1} \cup\{C\} \vdash(A \wedge B) \vee C}}{\Gamma_{1} \vdash(A \wedge B) \vee C}}{\{(A \vee C) \wedge(B \vee C)\} \vdash(A \wedge B) \vee C}}{\{\} \vdash((A \vee C) \wedge(B \vee C)) \Rightarrow((A \wedge B) \vee C)}}{\frac{\text { Or }_{R} \mathrm{I}}{}}
$$

where $P_{1}=$

Finally, let $\Gamma_{1}=\{A \Rightarrow B, B \Rightarrow C\}$ in

	$\overline{\Gamma_{1} \cup\{A\} \vdash A}$ HYP	$\overline{\overline{\Gamma_{1} \cup\{A, B\} \vdash B \Rightarrow C}}$ HYP	$\overline{\bar{\Gamma}}$ ¢ $\cup\{A, B\} \vdash B^{\text {HYP }}$	$\overline{\Gamma_{1} \cup\{A, B, C\} \vdash C} \begin{aligned} & \text { Hyp } \\ & \text { Imp E }\end{aligned}$
$\overline{\Gamma_{1} \cup\{A\} \vdash}$ (${ }^{\text {a }}$	$\overline{\Gamma_{1} \cup\{A\} \vdash A}$	($\Gamma_{1} \cup\{A, B\} \vdash C$		
$\Gamma_{1} \cup\{A\} \vdash C$				
$\Gamma_{1} \vdash A \Rightarrow C$				
$\{A \Rightarrow B\} \vdash(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$				
		$(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A$		

3. Consider the signature $\mathcal{G}=(V=\{x, y, z\}, F=\emptyset$, af $=\emptyset, R=\{<\}$, ar $=\{<\mapsto 2\})$, and the structure $S=\{\mathcal{G}, \mathcal{D}=\mathbb{N}, \mathcal{F}, \phi, \mathcal{R}, \rho\}$ where $\rho(<)$ is normal less-than comparison. Given the formula $\forall y . y<x \Rightarrow(\forall z . \neg(z<y))$:
(a) give an assignment that satisfies the formula, and explain why it does.

Any assignment that assigns 1 to x will do, since the only $y<1$ is 0 , and there is no $z<0$ in \mathbb{N}. Any assignment that assigns 0 to x will also work, since there is no $y<0$, making the implication vacuously true.
(b) give an assignment that falsifies the formula, and explain why it does.

Any assignment that assigns a number greater than 1 to x will do, since we can then choose $y<x$ such that $y>0$, and then choose 0 for z to falsify the formula.
4. Give a Natural Deduction proof for the formula $(\exists x . \forall y \cdot r(x, y)) \Rightarrow(\forall y . \exists x \cdot r(x, y))$

	$\underline{\{\exists x . \forall y \cdot r(x, y), \forall y \cdot r(x, y)\} \vdash \forall y \cdot r(x, y)} \mathrm{H}^{\text {¢ }}$	$\overline{\{\exists x . \forall y \cdot r(x, y), \forall y \cdot r(x, y), r(x, y)\} \vdash r(x, y)}$ Hyp
	$\{\exists x . \forall y \cdot r(x, y), \forall y \cdot r(x, y)\} \vdash r(x, y)$ Ald Ex	
	$\{\exists x . \forall y . r(x, y), \forall y . r(x, y)\} \vdash \exists x \cdot r(x, y)$	
$\overline{\{\exists x . \forall y . r(x, y)\} \vdash \exists x . \forall y . r(x, y)}$ НҮР	$\{\exists x \cdot \forall y \cdot r(x, y), \forall y \cdot r(x, y)\} \vdash \forall y \cdot \exists x \cdot r(x, y)$	
$\{\exists x . \forall y . r(x, y)\} \vdash \forall y . \exists x . r(x, y)$		
$\} \vdash(\exists x . \forall y \cdot r(x, y)) \Rightarrow(\forall y . \exists x \cdot r(x, y))$		

5. Prove the following Hoare triple:

$$
\{n \geq 1\} f:=1 ; i:=n ; \text { while } i>1 \text { do }(f:=f * i ; i:=i-1)\{f=n!\}
$$

By Precondition Strengthening, it suffices to show that

$$
\{n \geq 1 \wedge 1=n!/ n!\} f:=1 ; i:=n ; \text { while } i>1 \text { do }(f:=f * i ; i:=i-1)\{f=n!\}
$$

The reason for this rather strange precondition will become clear when we reach the while loop. Using the Sequencing rule and the Assignment Rule, we can show that

$$
\{n \geq 1 \wedge 1=n!/ n!\} f:=1\{n \geq 1 \wedge f=n!/ n!\}
$$

and
leaving us with the remaining triple

$$
\{n \geq 1 \wedge f=n!/ n!\} i:=n\{i \geq 1 \wedge f=n!/ i!\}
$$

-

$$
\{i \geq 1 \wedge f=n!/ i!\} \text { while } i>1 \text { do }(f:=f * i ; i:=i-1)\{f=n!\}
$$

By Postcondition Weakening, it is sufficient to show that

$$
\{i \geq 1 \wedge f=n!/ i!\} \text { while } i>1 \text { do }(f:=f * i ; i:=i-1)\{i \geq 1 \wedge f=n!/ i!\wedge i \leq 1\}
$$

since $i \geq 1 \wedge i \leq 1$ implies that $i=1$, and $n!/ 1!=n!$. Now we can use the While rule: by showing that

$$
\{i \geq 1 \wedge f=n!/ i!\wedge i>1\} f:=f * i ; i:=i-1\{i \geq 1 \wedge f=n!/ i!\}
$$

we will have verified the original triple. $i>1$ implies that $i-1 \geq 1$, and $f=n!/ i!$ implies that $f * i=n!/(i-1)$!, so by Precondition Strengthening, this is equivalent to showing that

$$
\{i-1 \geq 1 \wedge f * i=n!/(i-1)!\} f:=f * i ; i:=i-1\{i \geq 1 \wedge f=n!/ i!\}
$$

Now, by the Assignment rule we show that

$$
\{i-1 \geq 1 \wedge f * i=n!/(i-1)!\} f:=f * i\{i-1 \geq 1 \wedge f=n!/(i-1)!\}
$$

and

$$
\{i-1 \geq 1 \wedge f=n!/(i-1)!\} i:=i-1\{i \geq 1 \wedge f=n!/ i!\}
$$

and use the Sequencing Rules to combine these two steps, completing the proof.
6. Give a Floyd-Hoare rule for the command repeat C until B, which repeatedly executes C until B is true. Note that B is checked after each execution of C, so that C is always executed at least once.
The simplest correct rule is:

$$
\frac{\{P\} C\{Q\} \quad\{Q \wedge \neg B\} C\{Q\}}{\{P\} \text { repeat } C \text { until } B\{Q \wedge B\}}
$$

More complicated solutions are possible; the rules are correct as long as they reflect the fact that repeat C until $B=C$; while $\neg B$ do C.
7. Calculate weakest preconditions and verification conditions for the following Hoare triples:
(a) $\{n \geq 1\} f:=1 ; i:=n$; while $i>1$ do $(f:=f * i ; i:=i-1)\{f=n!\}$

First, we have to annotate the loop with its loop invariant, $P=(i \geq 1 \wedge f=n!/ i!)$. Now: wp (while $i>1$ inv P do $(f:=f * i ; i:=i-1))\{f=n!\}=$ P, wp $(i:=n$; while $i>1$ inv P do $(f:=f * i ; i:=i-1))\{f=n!\}=w p(i:=n) P=P[i \Rightarrow n]$, and the weakest precondition for the entire program is $P[i \Rightarrow n, f \Rightarrow 1]=(n \geq 1 \wedge 1=n!/ n!)$ (which you might recognize from the proof above).
For verification conditions, since the conditions generated by a sequence of assignment statements is true, the conditions for the entire program are equal to $v c g$ (while $i>1$ inv P do $(f:=f * i ; i:=i-1))\{f=n!\}=((P \wedge i>1) \Rightarrow w p C P) \wedge(v c g C P) \wedge((P \wedge i \leq 1) \Rightarrow(f=n!))$, where C is the loop body. $w p C P$ is $P[f \Rightarrow f * i][i \Rightarrow i-1]$, and $v c g C P$ is true, so the above is equivalent to $((P \wedge i>1) \Rightarrow P[f \Rightarrow f * i][i \Rightarrow i-1]) \wedge((P \wedge i \leq 1) \Rightarrow(f=n!))$.
(b) $\{a>0 \wedge b>0\}$
$m:=a ; n:=b$;
while $n \neq m$ do (if $m<n$ then $n:=n-m$ else $m:=m-n$)
$\{a \bmod m=0 \wedge b \bmod m=0\}$
A likely loop invariant for this program's loop is $P=(\operatorname{GCD}(a, b)=\operatorname{GCD}(n, m))$. With this invariant, the weakest precondition for the program is $P[n \Rightarrow b][m \Rightarrow a]=(\operatorname{GCD}(a, b)=\operatorname{GCD}(a, b))$, which is trivial as long as $a>0$ and $b>0$.
As before, the assignment statements contribute no verification conditions, and the vcg of the program is $((P \wedge m \neq n) \Rightarrow(w p C P)) \wedge((P \wedge m=n) \Rightarrow$ $(a \bmod m=0 \wedge b \bmod m=0))$, where C is the loop body. Now wp $C P=(m<n \wedge(P[n \Rightarrow n-m])) \vee(m \geq n \wedge(P[m \Rightarrow m-n]))$, giving a final verification condition of $((P \wedge m \neq n) \Rightarrow((m<n \wedge(P[n \Rightarrow n-m])) \vee(m \geq n \wedge(P[m \Rightarrow m-n])))) \wedge((P \wedge m=n) \Rightarrow(a \bmod m=0 \wedge b \bmod m=0))$.

