
Sample Midterm Questions (CS 477 Spring 2013)

1. Give truth tables for each subformula of the following formulae:

(a) φ1 : A ⇒ A ∧ (A ∨B)

A B A ∨B A ∧ (A ∨B) φ1

T T T T T
T F T T T
F T T F T
F F F F T

(b) φ2 : ((A ∨ C) ∧ (B ∨ C)) ⇒ ((A ∧B) ∨ C)

A B C A ∨ C B ∨ C (A ∨ C) ∧ (B ∨ C) A ∧B (A ∧B) ∨ C φ2

T T T T T T T T T
T T F T T T T T T
T F T T T T F T T
T F F T F F F F T
F T T T T T F T T
F T F F T F F F T
F F T T T T F T T
F F F F F F F F T

(c) φ3 : (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

A B C A ⇒ B B ⇒ C A ⇒ C (B ⇒ C) ⇒ (A ⇒ C) φ3

T T T T T T T T
T T F T F F T T
T F T F T T T T
T F F F T F F T
F T T T T T T T
F T F F F T T T
F F T T T T T T
F F F F T T T T

1



2. Give Natural Deduction proof trees for each of the above propositions.

{A} ⊢ A
Hyp

{A} ⊢ A
Hyp

{A} ⊢ A ∨B
OrL I

{A} ⊢ A ∧ (A ∨B)
And I

{} ⊢ A ⇒ A ∧ (A ∨B)
Imp I

Let Γ1 = {(A ∨ C) ∧ (B ∨ C), A ∨ C} and Γ2 = Γ1 ∪ {A,B ∨ C} in

{(A ∨ C) ∧ (B ∨ C)} ⊢ (A ∨ C) ∧ (B ∨ C)
Hyp

Γ1 ⊢ A ∨ C
Hyp

P1

Γ1 ∪ {C} ⊢ C
Hyp

Γ1 ∪ {C} ⊢ (A ∧B) ∨ C
OrR I

Γ1 ⊢ (A ∧B) ∨ C
Or E

{(A ∨ C) ∧ (B ∨ C)} ⊢ (A ∧B) ∨ C
AndL E

{} ⊢ ((A ∨ C) ∧ (B ∨ C)) ⇒ ((A ∧B) ∨ C)
Imp I

where P1 =

Γ1 ∪ {A} ⊢ (A ∨ C) ∧ (B ∨ C)
Hyp

Γ2 ⊢ B ∨ C
Hyp

Γ2 ∪ {B} ⊢ A
Hyp

Γ2 ∪ {B} ⊢ B
Hyp

Γ2 ∪ {B} ⊢ (A ∧B)
And I

Γ2 ∪ {B} ⊢ (A ∧B) ∨ C
OrL I

Γ2 ∪ {C} ⊢ C
Hyp

Γ2 ∪ {C} ⊢ (A ∧B) ∨ C
OrR I

Γ2 ⊢ (A ∧B) ∨ C
Or E

Γ1 ∪ {A} ⊢ (A ∧B) ∨ C
AndR E

Finally, let Γ1 = {A ⇒ B,B ⇒ C} in

Γ1 ∪ {A} ⊢ A ⇒ B
Hyp

Γ1 ∪ {A} ⊢ A
Hyp

Γ1 ∪ {A,B} ⊢ B ⇒ C
Hyp

Γ1 ∪ {A,B} ⊢ B
Hyp

Γ1 ∪ {A,B,C} ⊢ C
Hyp

Γ1 ∪ {A,B} ⊢ C
Imp E

Γ1 ∪ {A} ⊢ C
Imp E

Γ1 ⊢ A ⇒ C
Imp I

{A ⇒ B} ⊢ (B ⇒ C) ⇒ (A ⇒ C)
Imp I

{} ⊢ (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))
Imp I

3. Consider the signature G = (V = {x, y, z}, F = ∅, af = ∅, R = {<}, ar = {< 7→ 2}), and the structure S = {G,D = N,F , ϕ,R, ρ} where ρ(<) is normal less-than
comparison. Given the formula ∀y. y < x ⇒ (∀z. ¬(z < y)):

(a) give an assignment that satisfies the formula, and explain why it does.

Any assignment that assigns 1 to x will do, since the only y < 1 is 0, and there is no z < 0 in N. Any assignment that assigns 0 to x will also work, since
there is no y < 0, making the implication vacuously true.

(b) give an assignment that falsifies the formula, and explain why it does.

Any assignment that assigns a number greater than 1 to x will do, since we can then choose y < x such that y > 0, and then choose 0 for z to falsify the
formula.

2



4. Give a Natural Deduction proof for the formula (∃x. ∀y. r(x, y)) ⇒ (∀y. ∃x. r(x, y))

{∃x. ∀y. r(x, y)} ⊢ ∃x. ∀y. r(x, y)
Hyp

{∃x. ∀y. r(x, y), ∀y. r(x, y)} ⊢ ∀y. r(x, y)
Hyp

{∃x. ∀y. r(x, y), ∀y. r(x, y), r(x, y)} ⊢ r(x, y)
Hyp

{∃x. ∀y. r(x, y), ∀y. r(x, y)} ⊢ r(x, y)
All E

{∃x. ∀y. r(x, y),∀y. r(x, y)} ⊢ ∃x. r(x, y)
Ex I

{∃x. ∀y. r(x, y), ∀y. r(x, y)} ⊢ ∀y. ∃x. r(x, y)
All I

{∃x. ∀y. r(x, y)} ⊢ ∀y. ∃x. r(x, y)
Ex E

{} ⊢ (∃x. ∀y. r(x, y)) ⇒ (∀y. ∃x. r(x, y))
Imp I

5. Prove the following Hoare triple:
{n ≥ 1}f := 1; i := n; while i > 1 do (f := f ∗ i; i := i− 1){f = n!}

By Precondition Strengthening, it suffices to show that

{n ≥ 1 ∧ 1 = n!/n!}f := 1; i := n; while i > 1 do (f := f ∗ i; i := i− 1){f = n!}

The reason for this rather strange precondition will become clear when we reach the while loop. Using the Sequencing rule and the Assignment Rule, we can
show that

{n ≥ 1 ∧ 1 = n!/n!}f := 1{n ≥ 1 ∧ f = n!/n!}

and
{n ≥ 1 ∧ f = n!/n!}i := n{i ≥ 1 ∧ f = n!/i!}

leaving us with the remaining triple
{i ≥ 1 ∧ f = n!/i!}while i > 1 do (f := f ∗ i; i := i− 1){f = n!}

By Postcondition Weakening, it is sufficient to show that

{i ≥ 1 ∧ f = n!/i!}while i > 1 do (f := f ∗ i; i := i− 1){i ≥ 1 ∧ f = n!/i! ∧ i ≤ 1}

since i ≥ 1 ∧ i ≤ 1 implies that i = 1, and n!/1! = n!. Now we can use the While rule: by showing that

{i ≥ 1 ∧ f = n!/i! ∧ i > 1}f := f ∗ i; i := i− 1{i ≥ 1 ∧ f = n!/i!}

we will have verified the original triple. i > 1 implies that i − 1 ≥ 1, and f = n!/i! implies that f ∗ i = n!/(i − 1)!, so by Precondition Strengthening, this is
equivalent to showing that

{i− 1 ≥ 1 ∧ f ∗ i = n!/(i− 1)!}f := f ∗ i; i := i− 1{i ≥ 1 ∧ f = n!/i!}

Now, by the Assignment rule we show that

{i− 1 ≥ 1 ∧ f ∗ i = n!/(i− 1)!}f := f ∗ i{i− 1 ≥ 1 ∧ f = n!/(i− 1)!}

and
{i− 1 ≥ 1 ∧ f = n!/(i− 1)!}i := i− 1{i ≥ 1 ∧ f = n!/i!}

and use the Sequencing Rules to combine these two steps, completing the proof.

3



6. Give a Floyd-Hoare rule for the command repeat C until B, which repeatedly executes C until B is true. Note that B is checked after each execution of C,
so that C is always executed at least once.

The simplest correct rule is:

{P}C{Q} {Q ∧ ¬B}C{Q}
{P}repeat C until B{Q ∧B}

More complicated solutions are possible; the rules are correct as long as they reflect the fact that repeat C until B = C; while ¬B do C.

7. Calculate weakest preconditions and verification conditions for the following Hoare triples:

(a) {n ≥ 1}f := 1; i := n; while i > 1 do (f := f ∗ i; i := i− 1){f = n!}
First, we have to annotate the loop with its loop invariant, P = (i ≥ 1 ∧ f = n!/i!). Now: wp (while i > 1 inv P do (f := f ∗ i; i := i− 1)) {f = n!} =
P,wp (i := n; while i > 1 inv P do (f := f ∗ i; i := i− 1)) {f = n!} = wp (i := n) P = P [i ⇒ n], and the weakest precondition for the entire program is
P [i ⇒ n, f ⇒ 1] = (n ≥ 1 ∧ 1 = n!/n!) (which you might recognize from the proof above).

For verification conditions, since the conditions generated by a sequence of assignment statements is true, the conditions for the entire program are equal to
vcg (while i > 1 inv P do (f := f ∗ i; i := i− 1)) {f = n!} = ((P ∧ i > 1) ⇒ wp C P ) ∧ (vcg C P ) ∧ ((P ∧ i ≤ 1) ⇒ (f = n!)), where C is the loop body.
wp C P is P [f ⇒ f ∗ i][i ⇒ i− 1], and vcg C P is true, so the above is equivalent to ((P ∧ i > 1) ⇒ P [f ⇒ f ∗ i][i ⇒ i− 1]) ∧ ((P ∧ i ≤ 1) ⇒ (f = n!)).

(b) {a > 0 ∧ b > 0}
m := a; n := b;
while n ̸= m do (if m < n then n := n−m else m := m− n)
{a mod m = 0 ∧ b mod m = 0}
A likely loop invariant for this program’s loop is P = (GCD(a, b) = GCD(n,m)). With this invariant, the weakest precondition for the program is
P [n ⇒ b][m ⇒ a] = (GCD(a, b) = GCD(a, b)), which is trivial as long as a > 0 and b > 0.

As before, the assignment statements contribute no verification conditions, and the vcg of the program is ((P ∧m ̸= n) ⇒ (wp C P )) ∧ ((P ∧m = n) ⇒
(a mod m = 0∧ b mod m = 0)), where C is the loop body. Now wp C P = (m < n∧ (P [n ⇒ n−m]))∨ (m ≥ n∧ (P [m ⇒ m−n])), giving a final verification
condition of ((P ∧m ̸= n) ⇒ ((m < n ∧ (P [n ⇒ n−m])) ∨ (m ≥ n ∧ (P [m ⇒ m− n])))) ∧ ((P ∧m = n) ⇒ (a mod m = 0 ∧ b mod m = 0)).

4


