Sample Midterm Questions (CS 477 Spring 2013)

- 1. Give truth tables for each subformula of the following formulae:
 - (a) $\varphi_1 : A \Rightarrow A \land (A \lor B)$

A	В	$A \lor B$	$A \wedge (A \vee B)$	φ_1
T	T	Т	T	Т
T	F	Т	T	T
F	T	Т	F	Т
F	F	F	F	T

(b)
$$\varphi_2 : ((A \lor C) \land (B \lor C)) \Rightarrow ((A \land B) \lor C)$$

A	B	C	$A \lor C$	$B \vee C$	$(A \lor C) \land (B \lor C)$	$A \wedge B$	$(A \land B) \lor C$	φ_2
T	T	T	Т	Т	Т	Т	Т	T
T	T	F	Т	Т	Т	Т	Т	T
T	F	T	Т	Т	Т	F	Т	T
T	F	F	Т	F	F	F	F	T
F	T	T	Т	Т	Т	F	Т	T
F	T	F	F	Т	F	F	F	T
F	F	T	Т	Т	Т	F	Т	T
F	F	F	F	F	F	F	F	Т

(c)
$$\varphi_3 : (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

A	B	C	$A \Rightarrow B$	$B \Rightarrow C$	$A \Rightarrow C$	$(B \Rightarrow C) \Rightarrow (A \Rightarrow C)$	φ_3
T	T	T	T	T	T	T	T
T	T	F	Т	F	F	Т	T
T	F	T	F	Т	Т	Т	T
T	F	F	F	Т	F	F	T
F	T	T	Т	Т	Т	Т	T
F	T	F	F	F	Т	Т	T
F	F	T	Т	Т	Т	Т	T
F	F	F	F	Т	Т	Т	T

2. Give Natural Deduction proof trees for each of the above propositions.

$$\frac{\overline{\{A\} \vdash A} \text{ Hyp}}{\overline{\{A\} \vdash A \lor B}} \frac{\overline{\{A\} \vdash A} \text{ Hyp}}{\{A\} \vdash A \lor B} \operatorname{Or}_{L} \mathrm{I}}{\frac{\{A\} \vdash A \land (A \lor B)}{\{A\} \vdash A \land (A \lor B)}} \operatorname{Imp} \mathrm{I}$$

Let
$$\Gamma_1 = \{(A \lor C) \land (B \lor C), A \lor C\}$$
 and $\Gamma_2 = \Gamma_1 \cup \{A, B \lor C\}$ in

where $P_1 =$

$$\frac{\overline{\Gamma_{2} \cup \{B\} \vdash A} \stackrel{\mathrm{Hyp}}{\Gamma_{2} \cup \{B\} \vdash A} \stackrel{\mathrm{Hyp}}{\Gamma_{2} \cup \{B\} \vdash B} \stackrel{\mathrm{Hyp}}{\Lambda \mathrm{ND \ I}}{\Gamma_{2} \cup \{B\} \vdash (A \land B)} \stackrel{\mathrm{And \ I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \qquad \frac{\overline{\Gamma_{2} \cup \{C\} \vdash C} \stackrel{\mathrm{Hyp}}{\Gamma_{2} \cup \{C\} \vdash C} \stackrel{\mathrm{Hyp}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \qquad \frac{\overline{\Gamma_{2} \cup \{C\} \vdash C} \stackrel{\mathrm{Hyp}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Gamma_{2} \cup \{C\} \vdash (A \land B) \lor C} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{R}_{L} \mathrm{I}} \stackrel{\mathrm{OR}_{R} \mathrm{I}}{\Omega \mathrm{I}} \stackrel{\mathrm{OR}_{R} \mathrm{I$$

Finally, let $\Gamma_1 = \{A \Rightarrow B, B \Rightarrow C\}$ in

Hyp	Hyp	$\overline{\Gamma_1 \cup \{A, B\} \vdash B \Rightarrow C} \stackrel{\text{Hyp}}{\to} C$	$\overline{\Gamma_1 \cup \{A, B\} \vdash B} \stackrel{\text{Hyp}}{\to}$	$\overline{\Gamma_1 \cup \{A, B, C\}} \vdash C \xrightarrow{\text{Hyp}}$
$\overline{\Gamma_1 \cup \{A\} \vdash A \Rightarrow B} \stackrel{\text{ITYP}}{\longrightarrow}$	$\overline{\Gamma_1 \cup \{A\} \vdash A} \stackrel{\text{ITYP}}{\longrightarrow}$		$\Gamma_1 \cup \{A, B\} \vdash C$	IMP E
		$\Gamma_1 \cup \{A\} \vdash C$		IMP I
		$\Gamma_1 \vdash A \Rightarrow C$		Imp I
$\{A \Rightarrow B\} \vdash (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$				
	$\{\} \vdash ($	$A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow$	(C)	IMP 1

- 3. Consider the signature $\mathcal{G} = (V = \{x, y, z\}, F = \emptyset, af = \emptyset, R = \{<\}, ar = \{< \mapsto 2\})$, and the structure $S = \{\mathcal{G}, \mathcal{D} = \mathbb{N}, \mathcal{F}, \phi, \mathcal{R}, \rho\}$ where $\rho(<)$ is normal less-than comparison. Given the formula $\forall y. \ y < x \Rightarrow (\forall z. \ \neg(z < y)):$
 - (a) give an assignment that satisfies the formula, and explain why it does.

Any assignment that assigns 1 to x will do, since the only y < 1 is 0, and there is no z < 0 in N. Any assignment that assigns 0 to x will also work, since there is no y < 0, making the implication vacuously true.

(b) give an assignment that falsifies the formula, and explain why it does.

Any assignment that assigns a number greater than 1 to x will do, since we can then choose y < x such that y > 0, and then choose 0 for z to falsify the formula.

4. Give a Natural Deduction proof for the formula $(\exists x. \forall y. r(x, y)) \Rightarrow (\forall y. \exists x. r(x, y))$

	$\frac{1}{\left[\exists x, \forall a, x(x, a) \forall a, x(x, a) \right] \vdash \forall a, x(x, a)} \text{Hyp}$	$\boxed{\left[\exists m \ \forall a \mid m(m,a)\right] \forall a \mid m(m,a) \mid m(m,a)\right] \vdash m(m,a)}$	Hyp
	$\frac{\{ \exists x. \forall y. f(x,y), \forall y. f(x,y) \} \land \forall y. f(x,y) }{[\exists x. \forall y. f(x,y), \forall y. f(x,y), \forall y. f(x,y), \forall y, $	$\frac{\left\{ \exists x, \forall y, i(x,y), \forall y, i(x,y), i(x,y) \right\} + i(x,y)}{\left[x(x,y) \right] + x(x,y)}$	All E
	$\{\exists x. \forall y. r(x,y), \forall y.$	$\frac{r(x,y)}{(x,y)} \vdash r(x,y)$	· Ex I
Нур	$\{\exists x. \ \forall y. \ r(x,y), \forall y, $	$\{x,y\} \vdash \exists x. \ r(x,y)$	- All I
$\{\exists x. \ \forall y. \ r(x,y)\} \vdash \exists x. \ \forall y. \ r(x,y)$	$\{\exists x. \ \forall y. \ r(x,y), \forall y. \ r(x,y)\}$	$\{y\} \vdash \forall y. \exists x. r(x,y)$	- Ex E
	$\{\exists x. \ \forall y. \ r(x, y)\} \vdash \forall y. \ \exists x. \ r(x, y)$		– Imp I
	$\{\} \vdash (\exists x. \forall y. r(x, \overline{y})) \Rightarrow (\forall y. \exists x. r(x, y))$		IMP I

5. Prove the following Hoare triple:

$$\{n\geq 1\}f:=1;\;i:=n;\;\text{while}\;i>1\;\text{do}\;(f:=f*i;\;i:=i-1)\{f=n!\}$$

By Precondition Strengthening, it suffices to show that

$$\{n \geq 1 \land 1 = n!/n!\}f := 1; \ i := n; \ \text{while} \ i > 1 \ \text{do} \ (f := f * i; \ i := i-1)\{f = n!\}f = n!\}f = n!$$

The reason for this rather strange precondition will become clear when we reach the while loop. Using the Sequencing rule and the Assignment Rule, we can show that

$$\{n \ge 1 \land 1 = n!/n!\}f := 1\{n \ge 1 \land f = n!/n!\}$$

and

$$\{n \ge 1 \land f = n!/n!\} i := n\{i \ge 1 \land f = n!/i!\}$$

leaving us with the remaining triple

$$\{i \ge 1 \land f = n!/i!\}$$
while $i > 1$ do $(f := f * i; i := i - 1)\{f = n!\}$

By Postcondition Weakening, it is sufficient to show that

$$\{i \geq 1 \land f = n!/i!\} \texttt{while} \ i > 1 \ \texttt{do} \ (f := f * i; \ i := i-1) \{i \geq 1 \land f = n!/i! \land i \leq 1\}$$

since $i \ge 1 \land i \le 1$ implies that i = 1, and n!/1! = n!. Now we can use the While rule: by showing that

$$\{i \ge 1 \land f = n!/i! \land i > 1\}f := f * i; \ i := i - 1\{i \ge 1 \land f = n!/i!\}$$

we will have verified the original triple. i > 1 implies that $i - 1 \ge 1$, and f = n!/i! implies that f * i = n!/(i - 1)!, so by Precondition Strengthening, this is equivalent to showing that

$$\{i-1 \ge 1 \land f * i = n!/(i-1)!\}f := f * i; \ i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!/i!\}f := f * i := i-1\{i \ge 1 \land f = n!\}f := f * i := i-1\{i \ge 1 \land f = n!\}f := f * i := i-1\{i \ge 1 \land f = n!\}f := i-1\{i \ge 1 \land i = n!\}f := i-1\{i \ge n'\}f := i-1\{i \ge 1 \land i = n!\}f := i-1\{i \ge n'\}f := i-1\{i$$

Now, by the Assignment rule we show that

$$\{i-1 \ge 1 \land f * i = n!/(i-1)!\}f := f * i\{i-1 \ge 1 \land f = n!/(i-1)!\}$$

and

$$\{i-1 \ge 1 \land f = n!/(i-1)!\}i := i-1\{i \ge 1 \land f = n!/i!\}$$

and use the Sequencing Rules to combine these two steps, completing the proof.

6. Give a Floyd-Hoare rule for the command repeat C until B, which repeatedly executes C until B is true. Note that B is checked after each execution of C, so that C is always executed at least once.

The simplest correct rule is:

$$\frac{\{P\}C\{Q\} \quad \{Q \land \neg B\}C\{Q\}}{\{P\} \text{repeat } C \text{ until } B\{Q \land B\}}$$

More complicated solutions are possible; the rules are correct as long as they reflect the fact that repeat C until B = C; while $\neg B$ do C.

7. Calculate weakest preconditions and verification conditions for the following Hoare triples:

(a) $\{n \ge 1\}f := 1; i := n;$ while i > 1 do $(f := f * i; i := i - 1)\{f = n!\}$

First, we have to annotate the loop with its loop invariant, $P = (i \ge 1 \land f = n!/i!)$. Now: wp (while i > 1 inv P do (f := f * i; i := i - 1)) $\{f = n!\} = P$, wp (i := n; while i > 1 inv P do (f := f * i; i := i - 1)) $\{f = n!\} = wp$ (i := n) $P = P[i \Rightarrow n]$, and the weakest precondition for the entire program is $P[i \Rightarrow n, f \Rightarrow 1] = (n \ge 1 \land 1 = n!/n!)$ (which you might recognize from the proof above).

For verification conditions, since the conditions generated by a sequence of assignment statements is true, the conditions for the entire program are equal to vcg (while i > 1 inv P do (f := f * i; i := i - 1)) $\{f = n!\} = ((P \land i > 1) \Rightarrow wp \ C \ P) \land (vcg \ C \ P) \land ((P \land i \le 1) \Rightarrow (f = n!))$, where C is the loop body. $wp \ C \ P$ is $P[f \Rightarrow f * i][i \Rightarrow i - 1]$, and $vcg \ C \ P$ is true, so the above is equivalent to $((P \land i > 1) \Rightarrow P[f \Rightarrow f * i][i \Rightarrow i - 1]) \land ((P \land i \le 1) \Rightarrow (f = n!))$.

(b) $\{a > 0 \land b > 0\}$

m := a; n := b;while $n \neq m$ do (if m < n then n := n - m else m := m - n) $\{a \mod m = 0 \land b \mod m = 0\}$

A likely loop invariant for this program's loop is P = (GCD(a, b) = GCD(n, m)). With this invariant, the weakest precondition for the program is $P[n \Rightarrow b][m \Rightarrow a] = (\text{GCD}(a, b) = \text{GCD}(a, b))$, which is trivial as long as a > 0 and b > 0.

As before, the assignment statements contribute no verification conditions, and the vcg of the program is $((P \land m \neq n) \Rightarrow (wp \ C \ P)) \land ((P \land m = n) \Rightarrow (a \mod m = 0 \land b \mod m = 0))$, where C is the loop body. Now $wp \ C \ P = (m < n \land (P[n \Rightarrow n - m])) \lor (m \ge n \land (P[m \Rightarrow m - n]))$, giving a final verification condition of $((P \land m \neq n) \Rightarrow ((m < n \land (P[n \Rightarrow n - m])) \lor (m \ge n \land (P[m \Rightarrow m - n])))) \land ((P \land m = n) \Rightarrow (a \mod m = 0 \land b \mod m = 0))$.